
Hybrid Extensions in a Logical Framework

Taus Brock-Nannestad Nicolas Guenot Agata Murawska Carsten Schürmann
IT University of Copenhagen, Denmark

{tbro,ngue,agmu,carsten}@itu.dk

ABSTRACT
We discuss the extension of the standard LF logical framework
with operators for manipulating worlds, as found in hybrid logics
or in the HLF framework. To overcome the restrictions of HLF,
we present a more general approach to worlds in LF, where the
structure of worlds can be described in an explicit way. We give
a canonical presentation of the system and discuss the encoding
of logical systems, beyond the limited scope of linear logic that
formed the main goal of HLF.

1. HYBRID LOGICS AND LF
The LF logical framework [HHP93] has been successfully used

to represent adequately many different logics and systems, and
it greatly simplifies their encoding by providing a representation
language where the object-level is based on the λ-calculus. This
offers the possibility to use higher-order abstract syntax as well as
hypothetical judgements, where the usual notions of abstraction
and substitution are primitives.

There are however systems that cannot be encoded adequately
in LF without a heavy manipulation of structures that must be
dealt with manually both when defining the encoding and when
reasoning about the system. One such example can be obtained
by extending a standard logic, such as intuitionistic logic, with
hybrid operations as suggested by Prior [Pri67] and introduced
later in standard proof theoretical systems — some proof theory
for hybrid logics can be found for example in [Tza99], [ABM01]
and [GS11]. The idea of hybrid logics is simply to make explicit
the Kripke semantics usually given to logics, in particular modal
logics, by allowing inference rules to manipulate the worlds from
this semantics. This yields elegant proof systems for logics with
connectives that perform complex operations on these worlds.
For example, one can define a natural deduction system for the
intuitionistic form of modal logics [Sim94]where rules for� are:

Γ , xRy ` A[y]
�I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ ` �A[x]

Γ ` �A[x] (xRy)
�E −−−Γ ` A[y]

where A[x] indicates that A is provable at a particular world x ,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
LFMTP ’14, Vienna, Austria
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

while an assumption of the shape xRy in the context is a witness
of the condition that for this rule to hold, y must be reachable
from x in the relation R of the associated Kripke semantics. The
particular properties of such a modal logic then depend on the
axioms concerning this relation used in the semantics, and for
example a reflexive and transitive relation yields IS4.

The problem with the encoding of such a system in LF is that
worlds and assumptions of the shape xRy must be encoded and
manipulated manually, so that each time a property of R needs to
be used, the same procedure is applied. What is lacking in LF is
support for such structures and manipulations inside the syntax
to, for example, automatically deal with reflexivity, transitivity
or other properties of the relation. Such infrastructure has been
developed, with the specific purpose of encoding linearity, in the
HLF framework [Ree09] that extends LF with some support for
hybrid operations. In this setting, types and terms can use worlds
that are not always variables but can also be compound worlds
built with the binary ∗ operator and its unit ε. This structure of
worlds has been used to encode linear implication in HLF at the
level of the representation language: one can reason linearly in
HLF in the sense that −◦ is available as a type, simply defined as
a macro from primitive operations on worlds.

If we consider the naive encoding of a modal logic in LF, we
need to explicitly manipulate the worlds and define the constants
corresponding to rules of the congruence:

o : type pf : o → w → type ⊃ : o → o → o

w : type rc : w → w → type � : o → o

◊ : o → o

refl : {α : w} rc α α
trans : {α,γ,σ : w} rc α γ → rc γ σ → rc α σ

�I : {A : o}{α : w}({γ : w} rcα γ → pf A γ) → pf �A α
�E : {A : o}{α,γ : w} pf �A α → rc α γ → pf A γ

but this encoding is not adequate in LF because of the many ways
of making two worlds equivalent. The situation could not really
be improved in HLF, since the relation on worlds that is needed
here does not fit the syntax of ∗ and ε under AC-unification. The
work we present here stems from an attempt to represent and
reason about a hypersequent calculus for a variant of linear logic
[Mon13], that fails in HLF because of the structure of worlds: it
is used to ensure linearity and cannot be used to also represent
the connections between sequents in a hypersequent. Similarly,
encoding modal logics in HLF would be uneasy since the relation
on worlds is incompatible with the notion of equality on worlds
in this framework.

The goal of the work presented here is therefore to define a
more general extension of LF that allows a more extensively use

of the expressivity of hybrid operators. To do this, we follow the
standard presentation of LF in its canonical form [HL07] and
add ingredients from HLF, and more, to support the encoding of
advanced hybrid systems. The key to do this is the generalisation
of the structure of worlds, from a fixed set of operations {∗,ε} to
an abstract notion combining any number of operators and an
equivalence relation on worlds. The resulting framework is then
parametric in the definition given for worlds.

We start in Section 2 by describing our new hybrid framework,
called HyLF, and discuss reduction, normal forms and notions of
substitution in this setting. Then, in Section 3, we illustrate the
use of the system by considering an encoding of modal logics
exploiting an advanced structure of worlds.

2. EXTENDING HYBRID LF
Instead of starting from HLF and enriching the system, we go

back to the standard framework of LF [HHP93], in its form based
on canonical typing derivations [HL07]. In particular, we use the
standard λ-calculus as base, without spines [CP03], to keep the
theory as simple as possible. The languages of terms and types
of our HyLF framework extend canonical LF to support various
user-defined operators on worlds.

In the following, we denote by letters such as x , y and z term
variables, by t, u and v canonical terms, by r and s atomic terms,
by A, B and C canonical types, by F and G atomic types, and by
K or L kinds of HyLF. Moreover, we use Greek letters such as α
or γ for world variables and p or q for worlds in general. Terms,
types and kinds are defined by the following grammar:

K , L ::= type |
A, B ::= F |
F, G ::= a |
t, u ::= r |
r, s ::= x | c |

Πx : A.K | ∀α.K
Πx : A.B | ∀α.A | A@p | ↓α.A
F t | F {p}
λx .t | λ{α}.t | t at p | hereα.t
r t | r {p} | r to p | ccw r

(1)

This system is similar to HLF [Ree09], with more primitives at
the level of terms reflecting elimination rules for world operators
into the object language. For the sake of simplicity, no cartesian
product is used in HyLF, and we collapse dependent product and
universal quantification when it comes to worlds.

The generalisation of HyLF with respect to HLF lies in the way
worlds can be defined: instead of defining one fixed structure of
worlds with the operator ∗ and its unit ε, we will make the whole
framework parametric in the definition of worlds. The first step
in the instantiation of the framework is to define the language
of worlds, which is always of the shape:

p, q ::= α | o(~p) where o : |~p| ∈ O

where o is any operator defined in the operators signature O that
contains entries of the form o : k indicating that o is an operator
of arity k, and ~p is a sequence of worlds of length |~p|. The second
step of the instantiation is to define the equivalence relation ≡
over worlds, which must be a congruence for the operators in O ,
by specifying additional equations.

DEFINITION 2.1. An instance HyLF(O , ≡) of the parametric
HyLF framework is defined by providing an operators signature O
and a congruence ≡ over worlds.

In the following, we write HyLF when describing properties of
any particular instance, and specify the exact operators signature
and congruence used only when necessary. The typing rules for
the canonical term level of HyLF is shown in Figure 1. Binding
a world can be done in this system through a λ-abstraction, but
also with hereα.t, a construct binding the current world.

Ω; Γ , x : A[p] ` t ⇐ B [p]
Πi −−
Ω; Γ ` λx .t ⇐ Πx : A.B [p]

Ω; Γ ` t{p/α} ⇐ A{p/α} [p]
↓i −−
Ω; Γ ` hereα.t ⇐ ↓α.A[p]

Ω; Γ ` t ⇐ A[q] p ∈W
@i −−−
Ω; Γ ` t at q⇐ A@q [p]

Ω,α; Γ ` t ⇐ A[p] α 6∈ Ω
∀i −−
Ω; Γ ` λ{α}.t ⇐∀α.A[p]

. .

Ω; Γ ` t ⇒ F [q] p ≡ q p ∈W
s −−−

Ω; Γ ` t ⇐ F [p]
. .

Ω; Γ ` r ⇒ Πx : A.B [p] Ω; Γ ` t ⇐ A[p]
Πe −−−

Ω; Γ ` r t ⇒ B{t/x} [p]

Ω; Γ ` r ⇒ ↓α.A[p]
↓e −−
Ω; Γ ` ccw r ⇒ A{p/α} [p]

x : A[p] ∈ Γ p ∈W
x −−−
Ω; Γ ` x ⇒ A[p]

Ω; Γ ` r ⇒ A@p [q] p ∈W
@e −−

Ω; Γ ` r to p⇒ A[p]

c : A[p] ∈ sig p ∈W
c −−−

Ω; Γ ` c⇒ A[p]

Ω; Γ ` r ⇒∀α.A[q] p ∈W
∀e −−
Ω; Γ ` r {p} ⇒ A{p/α} [q]

Figure 1: Typing rules for HyLF terms

EXAMPLE 2.1. The structure of worlds used in HLF is obtained
in HyLF by an instantiation where the language of worlds is defined
by the signature {∗ : 2,ε : 0}, corresponding to the grammar:

p, q ::= α | p ∗ q | ε

and where the congruence over worlds is defined by the rules:

−−−
(p ∗ q) ∗ p′ ≡ p ∗ (q ∗ p′)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p ∗ q ≡ q ∗ p

−−−−−−−−−−−−−−−−−−−−
p ∗ ε ≡ p

−−−−−−−−−−−−
p ≡ p

q ≡ p
−−−−−−−−−−−−
p ≡ q

p ≡ q q ≡ p′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p ≡ p′
p ≡ p′ q ≡ q′
−−

p ∗ q ≡ p′ ∗ q′

which are implementing AC-unification.

In the rules shown in Figure 1, we use two kinds of judgements
to indicate whether a type is synthetised from the term or checked
against the term, always at some world p, which are denoted by
Ω; Γ ` t ⇒ A[p] and Ω; Γ ` t ⇐ A[p] respectively. In both cases,
Ω denotes a set of world variables and Γ is a list of assumptions of
the shape x : A[p]. This means that assumptions are assigned a
world, as often done in sequent calculi for modal logics [GS11],
but not done in HLF. The two judgements are meant to enforce a
separation between canonical and atomic terms, so that all terms
typed are canonical. Moreover, in these rules:

• the condition p ∈ W ensures that p appears in the set W
of worlds well-formed according to the signature O ,

• the list sig is a constants signature, implicitly associated to
the judgement — we could write `sig but omit this for the
sake of readability,

a : K [p] ∈ sig p ∈W
a −−

Ω; Γ ` a⇒ K [p]

Ω; Γ ` F ⇒∀α.K [q] p ∈W
∀f −−
Ω; Γ ` F {p} ⇒ K{p/α} [q]

Ω; Γ ` F ⇒ Πx : A.K [p] Ω; Γ ` t ⇐ A[p]
Πf −−−

Ω; Γ ` F t ⇒ K{t/x} [p]
. .

Ω; Γ ` F ⇒ type [p]
f −−−
Ω; Γ ` F :: type [p]

Ω,α; Γ ` A :: type [p] α 6∈ Ω
∀ −−

Ω; Γ ` ∀α.A :: type [p]

Ω; Γ ` A :: type [p] Ω; Γ , x : A[p] ` B :: type [p]
Π −−−

Ω; Γ ` Πx : A.B :: type [p]

Ω; Γ ` A{p/α} :: type [p]
↓ −−−
Ω; Γ ` hereα.A :: type [p]

Ω; Γ ` A :: type [q] p ∈W
@−−−

Ω; Γ ` A@q :: type [p]
. .

p ∈W
t −−
Ω; Γ ` type :: kind [p]

Ω,α; Γ ` K :: kind [p] α 6∈ Ω
∀k −−−

Ω; Γ ` ∀α.K :: kind [p]

Ω; Γ ` A :: type [p] Ω; Γ , x : A[p] ` K :: kind [p]
Πk −−−

Ω; Γ ` Πx : A.K :: kind [p]

Figure 2: Kinding rules for HyLF

• we go from one kind of judgement to the other only in the
s rule, which swaps from synthesis to checking, and this is
also the only rule relying on the congruence ≡ ,

• in the axioms x and c, the context Γ and the signature sig
should be checked for well-formation, following rules that
we omit here but are straightforward,

• the notations {t/x} and {p/α} correspond to the standard
notion of capture-avoiding substitution in a term, of a term
for a variable and a world for a variable, respectively.

Finally, we show in Figure 2 the rules for kinding type families
in HyLF, which are again an extension of the standard rules for
LF, where abstraction can be performed on worlds and atomic
types can also be applied to the worlds. Note that the same kind
of conditions are used in these rules as in Figure 1, and contexts
and signatures should be checked at axiom rules a and t. There
are three new judgements in these rules, Ω; Γ ` F ⇒ K [p] and
Ω; Γ ` A :: type [p], and Ω; Γ ` K :: kind [p] which represent the
validity of a type A at some world p, having a certain kind K or
just type, and the validity of a kind K at p, respectively.

The term level of this system reflects the extension of the type
level by offering primitives to manipulate worlds. The meaning
of these constructs can be intuitively understood as follows:

• the universal quantification on worlds ∀α.A yields a simple
mechanism of abstraction and application, distinguished
from the standard λ-calculus constraints by the {p} syntax
used in both abstraction and application, so that λ{α}.t is
related only to r {p} and not standard application,

• the world localisation operation A@p yields the operations
t at p and r to p which indicate that some term t must be
evaluated at a world p, and that r has been moved to the
world p, respectively: this plays a role in the semantics of

computation in this setting, where reduction happens at a
certain world to reflect the constraints imposed by typing
judgements,

• the current world (binding) operation ↓α.A is similar to the
world quantification but it yields a mechanism for binding
the world where the term t will be evaluated through the
operation hereα.t, and associating this name to the world
where the term r is currently evaluated, with the operation
of call-current-world denoted by ccw r.

Canonicity. In a logical framework such as LF, it is important
to be able to isolate canonical forms, so that adequacy can later be
proven, to correctly relate the structures being encoded and their
actual LF encodings. This is why the typing rules for HyLF are
bidirectional and restrict the formation of terms to the grammar
given in (1). However, we need to have a notion of reduction to
offer to represent the dynamics of the systems we encode — for
example, reductions for cut elimination in logics presented in a
sequent calculus. This cannot be done in the canonical system,
since reductions correspond to elimination of detours, where an
introduction rule appears immediately above the corresponding
elimination rule in a typing derivation.

In order to recover a system where reductions are possible, we
need to bypass the restrictions imposed by the use of⇒ and⇐
annotations. Moving from one kind of judgement to the other is
already possible using the swap rule s. All we need is therefore
a rule s−1 opposite to this rule:

Ω; Γ ` t ⇐ A[q] p ≡ q p ∈W
s−1 −−

Ω; Γ ` t ⇒ A[p]

to be able to type non-canonical forms. Note that this rule applies
at any type and not just on atomic types, yielding the possibility
to type sequences of introduction and elimination rules. Here,
we use a canonical presentation where this rule does not appear,
and keep reduction as an “external” device. In the following, we
call well-typed a term t such that for some type A there exists a
typing derivation for Ω; · ` t ⇐ A[p] in HyLF — this implies that
t is canonical, since the s−1 rule is not used.

Reduction. Allowing non-canonical forms allows us to accept
more terms, but we want to reason under an equivalence relation
such that any non-canonical term is associated to some canonical
term. This relies on a notion of reduction on the non-canonical
terms of a grammar where t appears in the category r as shown
in (1) — this is obtained with the s−1 rule shown above. Since
in the hybrid setting all terms are reduced at a certain world, the
reduction relation −−→p must be parameterised by some p where
evaluation happens. The main reduction rules are:

(λx .t) u −−→p t{u/x}

ccw (hereα.t) −−→p t{p/α}
(t at p) to p −−→p t
(λ{α}.t) {q} −−→p t{q/α}

(2)

where the first is simply β-reduction and the others represent
the elimination of other detours in HyLF typing derivations. But
there are more rules needed here, to allow reduction under any
construct. These rules are standard in most cases, and we have
for example:

λx .t −−→p λx .u if t −−→p u
t u −−→p v w if t −−→p u and v −−→p w

ccw t −−→p ccw u if t −−→p u
hereα.t −−→p hereα.u if t −−→p u

but the reduction rules involving the at and to operators have
a specific effect on the world where evaluation happens:

t at q −−→p u at q if t −−→q u
t to p −−→p u to p if t −−→q u for some q ∈W

corresponding to the meaning of these operations. Indeed, even
when t atq is evaluated at p, the evaluation of t is performed at
world q, and if t is evaluated into u at q, then t tou transfers the
result of this evaluation to world p — this can be related to the
fetch/get operations affecting the current world of evaluation
in the modal λ-calculus presented in [MCHP04].

Apart from this use of world in the evaluation of terms, the
computational semantics of HyLF relies on standard notions. In
particular, the key element in reduction is substitution. There are
two kinds of substitution applied in (2): the usual substitution
{u/x} of some term u for a term variable x , capture-avoiding and
relying on α-conversion for λ-abstractions, and the substitution
{p/α} of a complex world p for a world variable α. This second
form of substitution is defined in a standard way, relying on the
α-conversion of world names in the binding operations of world
abstraction and current world abstraction. Intuitively, this is the
simultaneous replacement of all the free occurrences of α by the
world p, in any term. We will not discuss here the properties of
the −−→p reduction or of its reflexive, transitive closure −−�p.

Substitution. The dynamics of non-canonical terms is based
on the notion of substitution. In the canonical HyLF system, we
cannot define the usual notion of substitution because it does
not necessarily yield a canonical form. Such a notion can be
defined here, and thus preserve canonical forms, only if it is pa-
rameterised to an hereditary form of substitution, where redexes
created by substitution are reduced immediately [WCPW04].

DEFINITION 2.2. For any well-typed terms t, u, any variable x
and a world p, the hereditary substitution t[u/x]p of u for x in t
at world p is defined recursively by:

−−−−−−−−−−−−−−−−−−−−−−−−−−−
x[u/x]p = u

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
y[u/x]p = y

r[u/x]p = s t[u/x]p = v
−−−

(r t)[u/x]p = s v

−−−−−−−−−−−−−−−−−−−−−−−−−−
c[u/x]p = c

r[u/x]p = λy.v′ t[u/x]p = t ′ v′[t ′/y]p = v
−−

(r t)[u/x]p = v

t[u/x]p = v
−−−
(λy.t)[u/x]p = λy.v

t[u/x]p = v
−−−
(λ{α}.t)[u/x]p = λ{α}.v

t[u/x]q = v
−−
(t at q)[u/x]p = v at q

t[u/x]p = v
−−
(hereα.t)[u/x]p = hereα.v

r[u/x]q = s
−−
(r to p)[u/x]p = s to p

r[u/x]q = t at p
−−−
(r to p)[u/x]p = t

r[u/x]p = s
−−
(ccw r)[u/x]p = ccw s

r[u/x]p = hereα.t
−−
(ccw r)[u/x]p = t{p/α}

r[u/x]p = s
−−
(r {q})[u/x]p = s {q}

r[u/x]p = λ{α}.t
−−−
(r {q})[u/x]p = t{q/α}

Note that only the case of crossing an application can create
new redexes in LF, but here there are three more non-trivial cases
corresponding to other reduction rules in HyLF. However, none
of these new cases trigger a term substitution, and substitution of
worlds never creates new redexes, so that it does not need to be

defined hereditarily to stay in the canonical fragment. Indeed, all
redexes in (2) rely on the shape of terms rather than on worlds,
except of (t at p)toq, but it can only be well-typed if p = q. We
can now prove that hereditary substitution is actually a particular
implementation of the reductions shown in (2).

THEOREM 2.1 (HEREDITARY SUBSTITUTION). For any terms t
and u, if there exists v = t[u/x]p for a given world p then we have
the reduction t{u/x} −−�p v.

PROOF. By structural induction on the tree used to justify the
statement t[u/x]p = v, with base cases in the three axioms given
above. Most cases are direct calls to the induction hypothesis, as
they reflect the propagation of substitution in the term. The main
cases are the ones involving a newly created redex:

• if substitution creates an abstraction inside an application,
then we have r[u/x]p −−�p λy.v′ and t ′[u/x]p −−�p t ′′

by induction hypothesis, but also v′[t ′/x]p −−�p v, so that
we can conclude (r t ′)[u/x]p −−�p v,

• if substitution creates an at statement inside a to, we have
r[u/x]p −−�p vatp by induction hypothesis and therefore
we have (r to p)[u/x]p −−�p v,

• if substitution creates a current world binding in a current
world call, we have r[u/x]p −−�p hereα.v by induction
hypothesis and thus (ccw r)[u/x]p −−�p v{p/α},

• if substitution creates a world abstraction in an application
to some world, we have r[u/x]p −−�p λ{α}.v by induction
hypothesis and thus (r {q})[u/x]p −−�p v{q/α},

so that in any case reduction produces the resulting term v. �

Note that the correspondence between hereditary substitution
and the reduction of non-canonical HyLF terms is established
only for well-typed terms, which simplifies greatly the situation
as it prevents the creation of redexes through world substitution,
making world substitution non-hereditary.

The critical property of the notion of hereditary substitution is
that it preserves typeability in the canonical HyLF system, along
with the fact that given well-typed terms t and u, we can perform
the substitution of one for a variable in this other. The proof of
this uses an induction that is made more complicated by the the
case where a new β-redex is created: it must involve the type
of the u being substituted. This is however standard, and it only
requires to consider a simple approximation of the type of u.

DEFINITION 2.3 (TYPE ERASURE). For a term u of type A, the
simple type τ(u) of u is defined by induction on A as ¹Aºτ, where:

¹aºτ = a
¹Πx : A.Bºτ = A→ B ¹∀α.Aºτ = A
¹F tºτ = ¹Fºτ t ¹A@pºτ = A
¹F {t}ºτ = ¹Fºτ {p} ¹↓α.Aºτ = A

We can now state and prove the main theorem allowing to use
the notion of substitution in the canonical presentation of HyLF.
More details on this result in standard LF but also in HLF can be
found in the literature [HL07, Ree09].

THEOREM 2.2 (SUBSTITUTION). Given any two terms t and u
such that Ω; Γ , x : A[q],∆ ` t ⇐ B [p] and Ω; Γ ` u⇐ A[q] there
exists a term t[u/x] such that Ω; Γ ,∆ ` t[u/x]⇐ B{u/x} [p].

PROOF. We proceed by induction on the pair (τ(u), |t|), under
lexicographic ordering, with base cases when t is a term variable
or a constant: if it is x then we can simply use the given typing

derivation for u, and the two other cases are trivial. Then, in the
general case, most of the configurations require only to apply the
induction hypothesis and conclude using the right typing rule. In
the cases involving the creation of a redex of world constructs,
a world substitution might be needed in the derivation obtained
by induction hypothesis.

Finally, the complicated case is the one involving the creation
of a β-redex, when t is an application: the induction hypothesis
can be used for substitution in the function and in its argument
since they are both structurally smaller than t, but the induction
hypothesis can be used on the hereditarily spawned substitution
only because the term being substituted in a term v potentially
larger than t has a simple type smaller than τ(u). �

There is another theorem that allows to perform the same kind
of operation when a world is concerned. This corresponds to the
observation that if a world variable is used in a typing derivation,
this derivation is parametric in this variable, so that consistently
replacing this variable with any given world always yields a valid
typing derivation.

THEOREM 2.3 (WORLD SUBSTITUTION). Given a term t such
that Ω,α; Γ ` t ⇐ B [p] and some world q, there is a derivation of
the judgement Ω; Γ {q/α} ` t{q/α} ⇐ B{q/α} [p{q/α}].

PROOF. By induction on the given typing derivation, with base
cases when an axiom rule x or c is used, where the substitution
can be performed provided q is a valid world — the substitution
was also applied to the signature implicitly present in `. In the
general case, we can always use the induction hypothesis and
apply the right typing rule. Note that rules for world constructs
can still be applied after substitution because the substitution is
performed on every part of the judgement. �

We will not go into further details about the properties of terms
and derivations forming the metatheory of the HyLF framework,
but rather present examples of how extending LF with hybrid
constructs allows us to elegantly represent logics that are defined
by a hybrid system

3. ENCODING LOGICS IN HyLF
We will consider here two ways of using the hybrid operations

to encode logics and systems. The first approach is the standard
encoding idea of LF, where the given system is defined with rules
represented by typed constants added to the signature, such that
adequacy can be proven between the system as seen “on paper”
and its LF representation. The second approach is to encode any
given logical connective into the type level of LF, and prove that
the typing rules from LF correspond to the rules intended for
this connective, so that the form of reasoning embodied by this
connective is made available to encode further systems following
the standard encoding approach.

Note that the first approach, in the HyLF framework, requires
not only to define typed constants representing the rules of the
system, but also the definition of operators and a congruence on
worlds to instantiate the parametric framework. However, this is
a trade-off, where the added specification of the level of worlds
makes the representation of the rules simpler.

Intuitionistic modal logics. The most natural system that we
can encode using the hybrid operations of HyLF is the natural
deduction calculus for various intuitionistic modal logics defined
by Simpson [Sim94], using the rules shown in Figure 3. In this
system, the relation R on worlds defining the particular flavour

A[x] ∈ Γ
ax −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Ω;Σ; Γ ` A[x]

Ω;Σ; Γ , A[x] ` B [x]
→i −−
Ω;Σ; Γ ` A→ B [x]

Ω;Σ; Γ ` A[x] Ω;Σ; Γ ` A→ B [x]
→e −−

Ω;Σ; Γ ` B [x]

Ω, y;Σ, xRy; Γ ` A[y]
� i −−

Ω;Σ; Γ ` �A[x]

Ω;Σ; Γ ` �A[x]
� e −−
Ω;Σ, xRy; Γ ` A[y]

Ω, y;Σ; Γ ` A[y]
◊ i −−
Ω;Σ, xRy; Γ ` ◊A[x]

Ω;Σ; Γ ` ◊A[x] Ω;Σ, xRy; Γ , A[y] ` B [z]
◊ e −−−

Ω;Σ; Γ ` B [z]

Figure 3: Inference rules for the basic logic IK

of modal logic used is mentioned explicitly, so that the same rules
properly represent many different modal logics, such as IK, IS4
or IS5. This system is well-suited for a presentation in HyLF, as
we will be able to define the rules as constants and simply change
the definition of the congruence on worlds to switch between
different logics — by specifying exactly the axioms defining the
Kripke semantics of these logics.

The presentation of the IK system here is made slightly more
precise than the one given by Simpson, on the syntactic level: we
use the sequent notation and distinguish between three parts of
a context, denoted byΩ, Σ and Γ , to hold available world names,
assumptions on R and logical assumptions, respectively. In this
system, worlds are always just names such as x , y or z. A sequent
is written Ω;Σ; Γ ` A[x] for provability of A at a world x under
these three contexts. The formulas are defined by the standard
grammar:

A, B ::= a | A→ B | �A | ◊A

where one can observe that the IK system is modal but not hybrid
in the sense that worlds are used in sequents but not mentioned
in formulas. The presentation we have given is equivalent to the
original one [Sim94], and the distinctions made inside contexts
are meant to make adequacy as obvious as possible for the given
encoding of the system in HyLF.

The first step of the encoding is to define the structure of the
worlds, and the congruence relation ≡ . In all modal logics that
can be represented by the rules of IK shown above, the grammar
of worlds is:

p, q, o ::= α | pRq | p ∗ q | ε

where R is of arity 2 and represents the reachability relation of
the Kripke semantics, and ∗ and ε of arities 2 and 0 respectively
are used to encode sets of worlds.

REMARK 3.1. In the natural deduction IK and its variants, the
assumptions of the shape pRq involve only world names so that it
should be xRy, but our grammar does not enforce such restriction.
Indeed, the current definition of HyLF only allows the operators to
be specified with an arity, not a complete grammar.

This is however not a problem, as the encoding of rules preserve
the invariant that in any world of the shape pRq, both p and q are
variables: the worlds inside the assumptions are never accessed and
decomposed by the rules, but simply compared, so that replacing a
variable by a compound world does not break the encoding.

The precise meaning of operators on worlds is partly given by
the congruence. There will be a part of this relation common to
all systems based on the rules given for IK, which will actually be
the congruence for the logic IK itself. Then, extending ≡ with
axioms concerning R will yield other, richer logics. The basic part
of the congruence is defined by:

p ∗ q ≡ q ∗ p p ∗ ε ≡ p
p ∗ (q ∗ o) ≡ (p ∗ q) ∗ o p ∗ p ≡ p

We can now define constants that will represent the inference
rules of the system. These terms are given types representing the
structure of formulas and sequents in IK, following the usual LF
approach, where → stands for a non-dependent product:

o : type pf : o → ∀σ.∀α.type � : o → o

⊃ : o → o → o ◊ : o → o

Then, the purely implicational part of IK is described by rules
for ⊃which have no effect on the current world, and they simply
preserve and propagate it:

⊃I : (pf A s x → pf B s x) → pf (A⊃ B) s x
⊃E : pf (A⊃ B) s x → pf A s x → pf B s x

where we omit the outer bindings on A, B, s and x .
We can now consider the modal part of the system, encoding

the rules for � and ◊, which actually affect the worlds:

�I : (∀α. pf A (s ∗ xRα) α) → pf �A s x
�E : pf �A s x → pf A (s ∗ xRy) y
◊I : pf A s x → pf ◊A (s ∗ yRx) y
◊E : pf ◊A s x → (∀α. pf A s α → pf B (s ∗ xRα) y)

→ pf B s y

where we omit outer bindings on A, B, s, x and y . This encoding
of the IK rules can be proven adequate in a straightforward way,
since the types used here rely on the following correspondence
between a sequent and its encoding:

Ω;Σ; Γ ` A[x] ↔ pf A s x

where s is a world representing Σ by turning recursively Σ′, xRy
into s′ ∗ xRy , where s′ represents Σ′, and ε represents the empty
set. The parts Ω and Γ are handled implicitly, as usual in LF, by
the binders on world and term variables from the representation
language. The same applies for other logics, such as IS4, where
the Kripke semantics contains axioms for the reflexivity and the
transitivity of R. Representing IS4 is achived in our encoding by
extending the congruence ≡ with the equations:

xRx ≡ ε xRy ∗ yRz ≡ xRz

without changing the rules given in Figure 3. The effect of this
extension is to modify the set of formulas validated by the logic,
so that, in particular we can prove the axioms�A⊃ Aand A⊃ ◊A
by using reflexivity, as well as �A ⊃ ��A and ◊◊A ⊃ ◊A by
using transitivity. These axioms illustrate how the the use of the
congruence controls precisely the modal logic being represented,
just as the axioms of a Kripke semantics. In order to obtain IS5,
we can add the following axiom:

xRy ∗ xRz ≡ yRz

to the ones introduced before to define IS4. Various other axioms
from the standard proof theory of modal logics can be add in a
similar way.

Linear reasoning. Another use of hybrid operations in HyLF
consists in extending the representation language of types with
an encoding of linear implication−◦. This allows to subsequently

represent other systems using the type A−◦ B, and in particular
this the way a sequent calculus for linear logic can be adequately
represented, as done in HLF [Ree09]where it was the goal of the
introduction of hybrid operators. We can use in HyLF the exact
same encoding as in HLF, provided that we use:

A−◦ B ¬ ∀α.↓γ. (A@α→ B@(α ∗ γ))

because the two operations ∀α and@p behave the same in both
frameworks. This encoding yields a direct encoding of the rules
of introduction and elimination for −◦, in HyLF:

Ω,α; Γ , A@α [p] ` B [α ∗ p]
@i −−−
Ω,α; Γ , A@α [p] ` B@(α ∗ p) [p]

Πi −−−
Ω,α; Γ ` A@α→ B@(α ∗ p) [p]

↓ i −−
Ω,α; Γ ` ↓γ.(A@α→ B@(α ∗ γ)) [p]

∀i −−
Ω; Γ ` ∀α.↓γ.(A@α→ B@(α ∗ γ)) [p]

Ω; Γ ` ∀α.↓γ.(A@α→ B@(α ∗ γ)) [p]
∀e −−

Ω; Γ ` ↓γ.(A@q→ B@(q ∗ γ)) [p]
↓ e −−

Ω; Γ ` A@q→ B@(q ∗ p) [p] Ω; Γ ` A@q [p]
Πe −−−

Ω; Γ ` B@(q ∗ p) [p]
@e −−

Ω; Γ ` B [p]

where we omit the terms and simplify the notations by omitting
also the side conditions, and the constraints on worlds induced
by the use of @ restricts the set of valid proofs of A−◦B to those
proofs of A→ B that are actually the linear ones. Recall that the
structure defined for worlds to make this encoding work relies
on the following grammar:

p, q ::= α | p ∗ q | ε

with the congruence interpreting ∗ as a constructor for building
multisets, and ε as the empty multiset:

−−−
(p ∗ q) ∗ p′ ≡ p ∗ (q ∗ p′)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p ∗ q ≡ q ∗ p

−−−−−−−−−−−−−−−−−−−−
p ∗ ε ≡ p

−−−−−−−−−−−−
p ≡ p

q ≡ p
−−−−−−−−−−−−
p ≡ q

p ≡ q q ≡ p′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p ≡ p′
p ≡ p′ q ≡ q′
−−

p ∗ q ≡ p′ ∗ q′

In this definition, all the rules of the second line simply make ≡ a
congruence over the operators signature, which is a requirement
in HyLF, while the three axioms given in the first line are actually
assigning a meaning to these operators. More details on such an
encoding and the use of−◦ to represent other systems in a logical
framework can be found in the literature [Ree09].

Modal reasoning. Just as linearity can be encoded inside the
representation level of HLF and HyLF, it is conceivable to extend
this language further, by defining modalities such as the � and ◊
of modal logics within the syntax of types in HyLF. This would
allow us to represent systems for which an adequate encoding
relies on the ability to control separate worlds within a relation
as in Kripke semantics. Using the same ideas as in the encoding
of linearity in HLF, we can propose an encoding of � in HyLF:

�A ¬ ∀α.↓γ. A@(α / αRγ)

where / would be an operator on worlds allowing to distinguish
within the current world, in a sequent, between an actual world
and a constraint on the relation R that must be validated. In the
structure of worlds, we would then require enough operators to
keep a structured form of information about the relation.

The worlds language needed to implement such an encoding
in HyLF is similar to the one used for the object-level encoding
of modal logics:

p, q ::= α | pRq | p / q | ε

but the congruence is made rather complicated by the distinction
to be kept between the actual worlds and the parts of the worlds
representing information on the relation R:

−−
pR(p′ / q) ≡ pRp′ / q

−−
(p / q)Rp′ ≡ (p / q) / pRp′

−−−−−−−−−−−−−−−−−−−−
p / ε ≡ p

−−−
(p / q) / p′ ≡ (p / p′) / q

−−−−−−−−−−−−−−−−−−−−
p / p ≡ p

−−−
p / (q / p′) ≡ (p / q) / p′

−−−−−−−−−−−−
p ≡ p

q ≡ p
−−−−−−−−−−−−
p ≡ q

p ≡ q q ≡ p′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p ≡ p′
p ≡ p′ q ≡ q′
−−

p / q ≡ p′ / q′

especially since worlds will be composed in a way that will not
preserve the clear distinction seen in the encoding of �, which
justifies the use of rules to reorganise between actual worlds and
constraints of the shape pRq.

Notice that with the encoding shown above, the distributivity
axiom K is provable without any requirement on the structure of
worlds, and the axioms T and 4 yield the standard conditions on
worlds, reflexivity and transitivity. For example:

x −−−
Ω; Γ ,∀α.↓γ. A@(α / αRγ) [p] ` ∀α.↓γ. (A@α / αRγ) [p]

∀e −−−
Ω; Γ ,∀α.↓γ. A@(α / αRγ) [p] ` ↓γ. (A@q / qRγ) [p]

↓ e −−−
Ω; Γ ,∀α.↓γ. A@(α / αRγ) [p] ` A@(q / qRp) [p]

@e −−−
Ω; Γ ,∀α.↓γ. A@(α / αRγ) [p] ` A[p]

Πi −−
Ω; Γ ` (∀α.↓γ. A@(α / αRγ))→ A[p]

which represents the axiom�A→ A, requires the use the rule for
reflexivity in the congruence, for the proof to be valid in HyLF.

Furthermore, encoding the ◊ connective in such a way is more
complicated, since it requires to use an existential quantification
over worlds. This is not inconceivable, but the HyLF framework
would then be extended beyond the definition given here.

4. CONCLUSION AND FUTURE WORK
We have presented here an extension of the LF framework that

allows hybrid operators to be explicitly used for encodings, and
discussed its properties, as well as the representation of systems
for modal logics in this setting. This opens a number of questions
for future work:

• we still to to fully develop the metatheory of HyLF, and
in particular the underlying notion of reduction as well as
the expressive power of the framework — from a practical
viewpoint, we would need to impose some restrictions on
the structure given to worlds, since for example we could
think of defining a non-decidable congruence, that would
lead to problems during unification,

• we can now try to encode other logics in HyLF than the few
modal systems we mentioned, such as temporal, spatial or
epistemic logics, but also other presentations of logic, for
example based on hypersequents, that could be encoded
using worlds,

• we need to investigate further the question of encoding the
operators necessary for modal reasoning, starting with �
and ◊, but more generally we could try to identify other
forms of reasoning that can be reified by a modality, and
encoded into the world structure of HyLF,

• on the implementation side, the extended features of the
worlds in HyLF yield the question of the feasability of any
reasonable implementation of unification or coverage, but
we hope that restrictions imposed on the congruence can
reduce the complexity of the problem,

• we could also consider further extensions to the syntax of
types and terms in HyLF, in particular to allow existential
quantification over worlds, and over terms, or introduce a
cartesian product as done in HLF,

• the expressive power of the hybrid framework might allow
for the encoding of complex systems that combine several
aspects requiring a particular world structure, such as the
hybrid linear logic presented in [CD14], and the freedom
offered in the definition of operators on worlds could even
be enough to have general means of combining encodings,
so that the two levels of structure on worlds needed for a
linear treatment of context on one side, and access to the
worlds on the other, could be merged.

5. REFERENCES
[ABM01] C. Areces, P. Blackburn, and M. Marx. Hybrid

logics: Characterization, interpolation and
complexity. Journal of Symbolic Logic,
66(3):977–1010, 2001.

[CD14] K. Chaudhuri and J. Despeyroux. A hybrid linear
logic for constrained transition systems. In
R. Matthes and A. Schubert, editors, TYPES’13
Post-proceedings, to appear in LIPIcs, 2014.

[CP03] I. Cervesato and F. Pfenning. A linear spine
calculus. Journal of Logic and Computation,
13(5):639–688, 2003.

[GS11] D. Galmiche and Y. Salhi. Sequent calculi and
decidability for intuitionistic hybrid logic. Journal
of Information and Computation,
209(12):1447–1463, 2011.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. Journal of the ACM,
40(1):143–184, 1993.

[HL07] R. Harper and D. Licata. Mechanizing metatheory
in a logical framework. Journal of Functional
Programming, 17(4–5):613–673, 2007.

[MCHP04] T. Murphy VII, K. Crary, R. Harper, and F. Pfenning.
A symmetric modal lambda calculus for distributed
computing. In LICS’04, pages 286–295, 2004.

[Mon13] F. Montesi. Choreographic Programming. PhD
thesis, 2013.

[Pri67] A. Prior. Past, Present and Future. Oxford University
Press, 1967.

[Ree09] J. Reed. A Hybrid Logical Framework. PhD thesis,
2009.

[Sim94] A. Simpson. The Proof Theory and Semantics of
Intuitionistic Modal Logic. PhD thesis, 1994.

[Tza99] M. Tzakova. Tableau calculi for hybrid logics. In
N. Murray, editor, TABLEAUX’99, volume 1617 of
LNCS, pages 278–292, 1999.

[WCPW04] K. Watkins, I. Cervesato, F. Pfenning, and
D. Walker. A concurrent logical framework I: The
propositional fragment. In S. Berardi, M. Coppo,
and F. Damiani, editors, TYPES’03 Post-proceedings,
volume 3085 of LNCS, pages 355–377, 2004.

